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A stationary axisymmetric problem with conditions of convective heat
transfer is considered. A special method is employed to find an ap-
proximate solution in analytic form and its accuracy is evaluated.

We will examine the half-space z > 0 at whose
boundaries (surrounded by a circle of unit radius) a
constant temperature is maintained, with conditions
of convective heat transfer maintained over the re-
mainder of the boundary plane. In the case of a homo-
geneous and isotropic medium, determination of the
temperature distribution in the half-space can be re~
duced, as is well known, to determination of the har-
monic function &(r, z) for boundary conditions of the
form

6=1 when z=0, r<l, (1)
and

9—13%9:0 when 2=0, r>1, 2)
2

where k = const > 0. (Here and beyond, we will use
dimensionless quantities).

We know of a number of references [1-3] in which
this kind of problem is reduced to the solution of in-
tegral or integrodifferential equations. However, the
results derived in these references permit only nu-
merical solution, often significantly restricting the
possibility of its interpretation. In this connection,
we consider an approximate method of solving the
stated problem, and one which makes it possible to
derive an analytical expression for the solution.

We will present the unknown functions 8{(r, z) in the
form of the sum of the two functions

8=0 140"

satisfying the following boundary conditions when z =
=0:

o = [fO, r<l, (3)

0, r>l1, (4)

0" = 1—f(n), r<<l, (5)

‘zﬁ’i:o, r>1. (6)
0z

Condition (1) is identically satisfied in this case for
all f(r), while in order to satisfy condition (2) it is
necessary to determine f(r) so as to satisfy the fol-
lowing equation when r = 1:

o, 0)—= £ 2900 (7
0z

The problem of finding the harmonic functions ¢’
and 6" involves no fundamental difficulties. The solu-
tion of the first of the indicated problems in this case
can be obtained directly by means of the Green's func-
tion for a half-space and has the form

2

6’(r,z)=~i ‘ﬁl(

pflo)dpdy ®)
21
1)

22 1t 4+ p*—2rpcos )

g
while the solution of the second problem is presented
in the form

8" (r, 2) = 3? A exp(—Az)Jo(hr)dA, 9)

0

where AQ\) is found from the solution of the paired
integral equations:

AW L (Andh =1 —f(@), r<l, (10)

Oy §

T VAW Jo (AN dA =0, r>1. (11)
9

To find the function A(\) we can use, for example,
the familiar method proposed in {4]. By presenting
AQ\) in the form

1
A(R) = S' @ (£} cos A tdt (12)

0

we can satisfy Eq. (11) identically, while Eq. (10) is
brought to the form of the Schloemilch integral equa-
tion

(13)

whose solution is known [5] and is given by the ex~
pression

¢
_ 2.4 ¢r[i=i0]
v ()= n di VE=#

dr. (14)
The function 6" is thus defined by expressions (9),
(12), and (14), which, as does (8), include the unknown
function f(r). Determining f(r) directly by means of

relation (7) is difficult, since substitution into the
latter of the derived expressions for 6' and 8" trans-
forms it into the Fredholm integral equation of the
I-st kind with a nonsymmetric kernel.
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To find the approximate solution of the initial prob-
lem, we assume a certain expression of f(r) so as to
satisfy the following conditions:

1) the unknown function 6 must be continuous every-
where at the boundary and together with the derivative
96/06z it must diminish monotonically with increasing
r (whenr > 1);

2) the total heat flow from the boundary plane must
equal zero, i.e.,

@©

5‘ 6_______0 . 9 rdr =0;
0z

Y
0

3) condition (7) must be satisfied at least when r = 1.

The formulated requirement can be satisfied if we
assume f(r) in the form

_ B, r<e<],

15
0, c<<r<<l, (15)

fr)
where B and c are parameters.
The first of the above-cited conditions, as is not
difficult to see, is satisfied for any values of the pa-
rameters.

Substitution of (15) into (8) leads to the following
expression (see, for example, [7)):

N 2
B aV 2+ (r+cP
x[a_-c il (1, g, V)+
a+r 2
ET (i‘_, o, v)] (16)
a—r 2
where a = (¢ + 291/2, ny = =2r/a + 1), 0y = 2r/a - 1),

and v2 = 4er/[{r + c)? + z%]. Analogously, by means of
relations (14), (12), and (9), we obtain [6]

—2—(1—3), t<c,
o) = g ,
—1—B{l——=1], t>c,
n[ ( Vth*)] =¢
1
2 sin tcosAtdt
AN ==]|(1~—B +B el
®) ﬂ[( ) & W,*c,]

8'(r, 2)= —i- [(1 —B)J‘ E’MKZA—Z)- Jy(Ar)sinhd )+
0

2 —c?

1 3
+ B j‘ z‘dt_T S Jo(xr)exp(—xz)cosktdh]=

0

Vet V@ Fr=D+4— @+t — 1|
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The relationship between the parameters B and ¢
can be established by proceding from the condition
that the total heat flow be equal to zero, which is
equivalent to the case in which the coefficient for 1/z
in the expansion of 9(0, z} in powers of 1/z is equal to
0 inthe vicinity of an infinitely remote point. Assuming
in (16) and (17) that r = 0 and carrying out the inte-
gration in (17), we derive the following expression:

8 (0, z)=B(1————-—-—l ' )_1_
C 7/
Vo5
2 1 Bz 1—c*
—|(1—B {g — - arct e
+ L3 [( )arctg z + Ve+2 arcg]/cz—}-zz] (18)

‘Expanding (18) in a power series and equating the co-

efficient for 1/z to zero, we obtain the relationship

1
Be o .
1—-V1i-¢ (19)

Substituting (19) into (16) and (17), by means of ap-
propriate transformations we obtain an expression for
the temperature and density of the heat flow at the
boundary whenr > 1:

1 4
1—V1=¢ (_4— +

0, Oy = %

1 . 2—rP—? T 1
+ - arcsin S V 1 —c®arctg VAT ) ., (20)
a6 (r, 0) _
0z r>1
c ¢
=_2“__~1 rE(_r) K(—r—) (21)
n —VIi—¢& | FP=& r

Proceeding from (21), for the total heat flow we have

90,4y KO—E(Q

- )T (22)

Q=2n

H

Expression (22) can also be used to find heat ca-
pacity.

In all of the results obtained above we have the
parameter ¢ for whose determination we use the third
of the above~formulated conditions, i.e., we deter-
mine this parameter from the relationship

_ 09,0
0z

(1, 0) (23)

=2 [(I—B)arctg
n

1

V=t + & —1F + 4]

)

B j‘t[1/(22+r2—~t2)2+4z2t2+z2+r2—t2]”2 dt]

Vit V@t rairde + @ +r— 072

(1)
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Graph for determination of parameter c.

Magnitude of the Deviation Between the Approximate Boundary Conditions
when r > 1 (ap,4)

& |
r
0.97 0.60 0.30 0.10 0.05

1—-1.2 0.28 0.23 0.19 0.08 0.02
1.2—-15 0.24 0.18 0.10 0.0t 0.01
1.5-—-2.0 0.15 0.10 0.04 <0.01 <0.01
2.0—-5.0 0.05 0.03 0.01 <0.01 <0.01

>5.0 <0.01
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Having substituted (20) and (21) into (23), we obtain
the relationship between the known quantity k and the
parameter ¢

_ B (1= (1=VI1=¢)
k= EQQ—(_-NK@© (24)

It follows from (24) that the change in the parameter
¢ in the specified interval {0, 1] corresponds to a
change in k in the interval [1,0], for which the derived
solution of the problem is consequently valid.

The magnitude of the parameter c¢ for the specified
k € {0, 1] can be determined in this case by proceeding
from the relationship calculated with (24) and shown
in the figure.

The accuracy of the derived approximate solution
is determined from the deviation of the boundary con-
dition from the specified condition (2) when r > 1:

a(r)=0(r, 0)—&k , 1 <<r<<co. (25)

a6(r, 0)
0z
(In particular, when k =0 (c = 1), we have a(r) = 0,
i.e., the derived solution is exact in this case). The
calculation of a(r) showed that the greatest deviation
is encountered in values of r close to unity, where
this function exhibits an extremum. The table below
gives the largest absolute values of amax for various
intervals of variation in r for various values of k.

The upper limit of the error in the approximate
solution derived by us can be estimated to an accuracy
of 0.01 at any point of the half-space z > 0 by means
of the auxiliary function Afr,z), if the latter is har-
monic and if it assumes the values of 4,y when z =
=0: :

0.28; l<<r<1.5;

Afr, 0)=1{ 0.15; 1.5<r<2.0: (26)
0.05; 2.0 <<r<<5.0;
L0 5<Cr<< oo,

i 0; r<l;

The determination of the function Alr, z}, reducing
to the solution of the Dirichlet problem for a half-
space with boundary condition (26), involves no diffi-
culties; when r = 0, at the axes of the system, the
solution has the form

028 013
Vit+z2 V2,25+22

Ao, z)=z(
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0.10 0.05 ) . (27)

T Vite VHir

The calculation carried out in accordance with formula
(27) demonstrated that the error in the solution of the
original problem for the points on the axes of the
system does not exceed 0.07, i.e., it amounts to no
more than several percent of the maximum value of
the function at the boundary.

The derived approximate solution for the problem
with boundary conditions (1) and (2) thus yields com-
pletely satisfactory accuracy.

In conclusion, it should be noted that the above-
cited results can also be used for similar problems
in potential theory and, in particular, in calculating
the electric field of linearly polarizing electrodes.

NOTATION

6 is the temperature; Q is the heat flux; f and g are
function symbols; « is the difference in boundary con-
ditions; A is the error in calculation; pand t are in-
tegration variables; A is the parameter of variables
division in the Laplace equation; k is a real con-
stant; B and ¢ are parameters; r and z are cylindical
coordinates; J¢ and J; are Bessel functions of the first
kind of zeroth and first order, respectively;K, E, and
II are total elliptic integrals of the first, second, and
third kind, respectively.
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